
Tetrahedron Letters 51 (2010) 5035-5037

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

The design of efficient and selective routes to pyridyl analogues of 3-oxo-3,4-dihydro-2*H*-1,4-(benzothiazine or benzoxazine)-6-carbaldehydes

Gerald Brooks^b, Steven Dabbs^a, David T. Davies^b, Alan J. Hennessy^a, Graham E. Jones^b, Roger E. Markwell^b, Timothy J. Miles^{a,*}, Nathan A. Owston^b, Neil D. Pearson^c, Tony W. Peng^c

^a Antibacterial Discovery Performance Unit, Infectious Diseases CEDD, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
^b Antibacterial Discovery Performance Unit, Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
^c Antibacterial Discovery Performance Unit, Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA

ARTICLE INFO

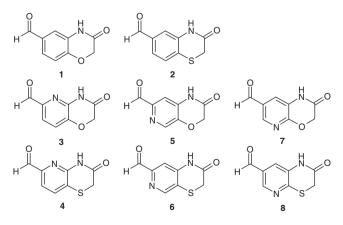
Article history: Received 26 April 2010 Revised 29 June 2010 Accepted 16 July 2010 Available online 22 July 2010

ABSTRACT

This Letter describes the synthesis of challenging pyridyl analogues of 3-oxo-3,4-dihydro-2*H*-1,4-(benzo-thiazine or benzoxazine)-6-carbaldehydes. The six different routes described are high yielding, contain no major purification issues and have been used to give gram quantities of each aldehyde.

© 2010 Elsevier Ltd. All rights reserved.

As part of an antibacterial medicinal chemistry programme we used commercially available 3-oxo-3,4-dihydro-2*H*-(1,4-benzothiazine and benzoxazine)-6-carbaldehydes **1** and **2** (Fig. 1). We also required an access to the non-commercial pyridyl analogues of these aldehydes **3–8**.


Although the synthesis of both 3-oxo-3,4-dihydro-2*H*-1,4-(benzothiazine and benzoxazine)-6-carbaldehydes **1** and **2** was known,¹ aldehydes **3–8** were unknown in the literature at this time.

For compound **3** we opted to start from commercially available nitrophenol **9** (Scheme 1).² Firstly, we protected the phenol as the methoxy derivative, then brominated and removed the methyl group to give the desired bromo nitro alcohol **10** in 96% yield over three steps. Bromo nitro alcohol **10** was then alkylated with bromo ethyl acetate using K_2CO_3 as base to give **11** in 89% yield. The nitro group was reduced by iron which gave the free aniline, that immediately cyclised to give bromide **12**. From here many possible routes are plausible to give the desired aldehyde **3**. In the interest of producing **13** on large scale we opted for a Suzuki reaction followed by oxidative cleavage. Using this route we were able to produce aldehyde **3** on kilogram scale.

For aldehyde **4** (Scheme 2),⁴ a literature search revealed a key intermediate 5-bromo-amino ester **15**.⁵ This was synthesised from commercially available pyridine **14** using the procedure described by Kelly,⁵ via bromination to give **15** in a 1:1 mixture with the undesired 3-bromo isomer **16**. Both isomers were easily separated by column chromatography. The bromine of **15** was then displaced by ethyl 2-mercaptoacetate and the intermediate cyclised immediately to give ester **17**. This ester was converted into the acid, then activated with *iso*-butyl chloroformate and reduced using NaBH₄ to

give alcohol **19**. Oxidation was carried out using MnO_2 as the oxidant to afford the desired aldehyde **4** in 55% yield.

Aldehyde **5** was synthesised from commercially available 5-hydroxy-2-methylpyridine (**20**) (Scheme 3).⁶ The first step involved formation of the *N*-oxide using *m*-CPBA, then alkylation with methyl bromoacetate to give compound **21** in 53% yield over two steps. This material was then nitrated selectively and the resulting free acid was re-protected with Mel to give methyl ester **22**. Rearrangement of **22** gave TFA-protected alcohol **23** in 34% yield. During purification by column chromatography of **23**, some cleavage of the TFA group was observed. Both TFA-protected and unprotected **23** were carried through the next steps to give alcohol **24**. This involved reduction of the nitro group with spontaneous cyclisation and deprotection to give the desired alcohol **24** in 66% yield over

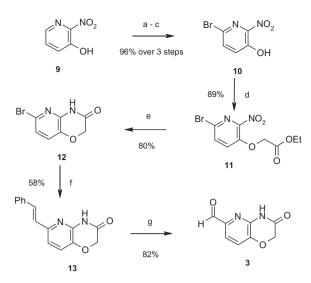
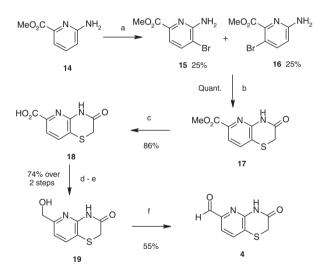
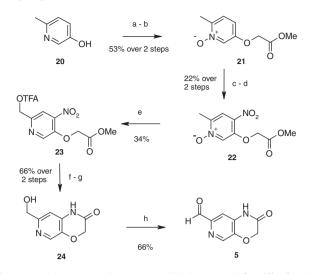


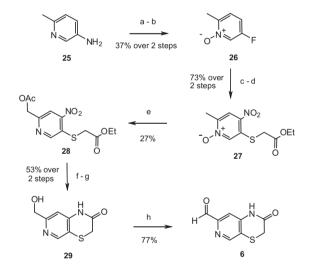
Figure 1. Required pyridyl analogues of 3-oxo-3,4-dihydro-2*H*-1,4-(benzothiazine and benzoxazine)-6-carbaldehydes.


^{*} Corresponding author. Tel.: +44 1438769482.

E-mail address: tim.j.miles@gsk.com (T.J. Miles).

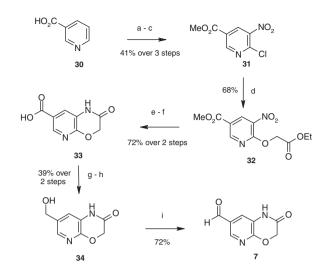
^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.07.095

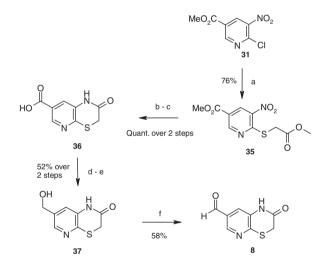

Scheme 1. Synthetic approach to 3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]oxazine-6-carbaldehyde (**3**).³ Reagents and conditions: (a) NaOMe, MeOH, rt; (b) Br₂, 0 °C, 30 min; (c) AcOH; (d) BrCH₂CO₂Et, K₂CO₃, Me₂CO, reflux, 10 h; (e) NH₄Cl, Fe, H₂O, MeOH, reflux, o/n; (f) (HO)₂BCH = CHPh, K₂CO₃, Pd(PPh₃)₄, H₂O, 1,4-dioxane, reflux, o/n; (g) O₃, CH₂Cl₂, -78 °C, 15 min, then Me₂S, -78 °C, 3 h then rt, o/n. o/n, overnight.


Scheme 2. Synthetic approach to 3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazine-6-carbaldehyde (**4**).³ Reagents and conditions: (a) Br_2 , CHCl₃, rt; (b) HSCH₂CO₂Et, NaH, DMF, 0 °C, 1 h, then **15**, rt, o/n; (c) NaOH, H₂O, 1,4-dioxane, reflux, o/n; (d) CICO₂Bu^{*i*}, Et₃N, THF, -10 °C, 20 min; (e) NaBH₄, H₂O, -10 °C, 30 min, then HCl, H₂O, rt, pH 7; (f) MnO₂, THF, CH₂Cl₂, rt, o/n.

two steps. Finally, we obtained aldehyde **5** in 66% yield via oxidation of alcohol **24** using MnO_2 .

Scheme 4 shows our route which utilises intermediate **26** to give aldehyde **6**.⁴ Blanz et al. had synthesised compound **26** using commercially available 5-amino-2-picoline (**25**),⁷ via a Sandmeyer reaction, then N-oxidation to give *N*-oxide **26** in 37% yield over two steps. The first step of our synthesis involved nitration of **26** followed by a fluoride displacement using ethyl 2-mercaptoacetate to give methyl ester **27** in 73% yield over two steps. The *N*-oxide rearrangement was performed using Ac₂O instead of trifluoroacetic anhydride (TFAA), otherwise the synthesis followed a very similar path as that for aldehyde **5** in Scheme 3.


Scheme 3. Synthetic approach to 2-oxo-2,3-dihydro-1*H*-pyrido[3,4-*b*][1,4]oxazine-7-carbaldehyde (**5**).³ Reagents and conditions: (a) *m*-CPBA, CHCl₃, rt, 1 h; (b) BrCH₂CO₂Me, K₂CO₃, rt, o/n; (c) fuming HNO₃, concd H₂SO₄, 65 °C, o/n; (d) MeI, K₂CO₃, rt, 3 days; (e) (CF₃CO)₂O, reflux, o/n; (f) AcOH, Fe, 60 °C, 1 h; (g) NaOH, 1,4-dioxane, H₂O, rt, o/n; (h) MnO₂, THF, CICH₂CH₂CH₂CI, 60 °C, 20 h.


Scheme 4. Synthetic approach to 2-oxo-2,3-dihydro-1*H*-pyrido[3,4-*b*][1,4]thiazine-7-carbaldehyde (**6**).³ Reagents and conditions: (a) HBF₄, BuⁿONO, EtOH, $-5 \degree$ C, 3 h; (b) *m*-CPBA, CH₂Cl₂, rt, o/n; (c) fuming HNO₃, concd H₂SO₄, 70 °C, 5.5 h; (d) HSCH₂CO₂Et, 1,4-dioxane, NaH, rt, 3 days; (e) Ac₂O, 80 °C, 6 h; (f) AcOH, Fe, 60 °C, 3 h; (g) NaOH, 1,4-dioxane, H₂O, rt, o/n; (h) MnO₂, THF, ClCH₂CH₂Cl, 65 °C, o/n.

For aldehyde **7** (Scheme 5),⁶ Berrie et al. had synthesised 6chloro-5-nitro-nicotinic acid methyl ester (**31**) via nitration followed by chlorination of 6-hydroxynicotinic acid (**30**) in 41% yield over three steps.⁸ We displaced the chloride of **31** using ethyl hydroxyacetate to give ethyl ester **32**. This ester was then reduced with iron and cyclised to afford acid **33** in 72% over two steps. The acid **33** was then activated with *iso*-butyl chloroformate and reduced using NaBH₄ to give alcohol **34**. Oxidation of alcohol **34** using MnO₂ gave the desired aldehyde **7** in 72% yield.

For the final aldehyde **8** we used the same general route as for aldehyde **7** (Scheme 6),⁴ but used methyl 2-mercaptoacetate instead of ethyl hydroxyacetate for the chlorine displacement. As

Scheme 5. Synthetic approach to 2-oxo-2,3-dihydro-1*H*-pyrido[2,3-*b*][1,4]oxazine-7-carbaldehyde (**7**).³ Reagents and conditions: (a) fuming HNO₃, concd H₂SO₄, 50 °C, 3 h; (b) SOCl₂, DMF, 80 °C, o/n; (c) MeOH, 30 min; (d) HOCH₂CO₂Et, 1,4-dioxane, NaH, rt, o/n; (e) AcOH, Fe, 60 °C, 2.5 h; (f) NaOH, THF, H₂O, rt, 2.5 h; (g) ClCO₂Buⁱ, CH₃Cl, DMF, THF, 0 °C, 2 h; (h) NaBH₄, H₂O, 0 °C, 1 h, then HCl, H₂O, rt, pH 7; (i) MnO₂, THF, CH₃Cl, rt, o/n.

Scheme 6. Synthetic approach to 2-oxo-2,3-dihydro-1*H*-pyrido[2,3-*b*][1,4]thiazine-7-carbaldehyde (**8**).³ Reagents and conditions: (a) $HSCH_2CO_2Me$, CH_2Cl_2 , Et_3N , rt, 1 h; (b) AcOH, Fe, 60 °C, 1 h; (c) NaOH, THF, H₂O, rt; (d) $CICO_2Bu^i$, Et_3N , THF, -10 °C, 20 min; (e) NaBH₄, H₂O, 0 °C, 30 min, then HCl, H₂O, rt, pH 7; (f) MnO₂, THF, CH₃Cl, rt, 18 h.

for aldehyde **7** this route was able to deliver gram quantities of aldehyde **8**.

In conclusion, we have demonstrated that all six aldehydes can be accessed and that all the routes were able to deliver multi-gram quantities of material.

Acknowledgements

Acknowledgement is given to Steve Richards and Richard Upton for NMR support, Bill Leavens for mass spectroscopy support and all the chemists involved in this work.

References and notes

- (a) Belliotti, T. R.; Wustrow, D. J.; Brink, W. A.; Zoski, K. T.; Shih, Y.; Whetzel, S. Z.; Georgic, L. M.; Corbin, A. E.; Akunne, H. C.; Heffner, T. G.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. **1999**, 42, 5181–5187; (b) Giannopoulos, T.; Ferguson, J. R.; Wakefield, B. J.; Varvounis, G. Tetrahedron **2000**, 56, 447–453.
- (a) Davies, D. T.; Jones, G. E.; Markwell, R. E.; Miller, W.; Pearson, N. D. WO2002056882; *Chem. Abstr.* 2002, 137, 125092.; (b) Miller, W. H.; Price, A. T. WO2007118130; *Chem. Abstr.* 2007, 147, 462228.
- 3. Selected analytical data: *Compound* **3**: White solid; mp 208–211 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 4.81 (*s*, 2H), 7.51 (*d*, *J* = 12 Hz, 1H), 7.62 (*d*, *J* = 12 Hz, 1H), 9.77 (*s*, 1H), 11.63 (br s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆): δ = 66.9, 119.8, 123.1, 142.0, 143.4, 144.4, 165.4, 191.0 ESI-HRMS: *m/z* calcd for C₈H₇N₂O₃: 179.0457; found 179.0456 [M+H]^{*}.

Compound **4**: White solid; mp 187–189 °C; ¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 3.67$ (s, 2H), 7.55 (d, *J* = 12 Hz, 1H), 8.07 (d, *J* = 12 Hz, 1H), 9.78 (s, 1H), 11.33 (br s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆): $\delta = 28.3$, 117.2, 122.8, 136.4, 148.5, 149.7, 165.8, 192.0. ESI-HRMS: *m/z* calcd for C₈H₇N₂O₂S: 195.0228; found 195.0229 [M+H]⁺.

Compound **5**: White solid; mp 211–213 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 4.83 (s, 2H), 7.39 (s, 1H), 8.36 (s, 1H), 9.82 (s, 1H), 11.31 (s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆): δ = 66.9, 108.2, 134.4, 137.8, 143.4, 147.5, 164.2, 192.3. ESI-HRMS: *m*/*z* calcd for C₈H₇N₂O₃: 179.0457; found 179.0458 [M+H]⁺. *Compound* **6**: White solid; mp 216–218 °C; ¹H NMR (600 MHz, DMSO-*d*₆):

Compound **6**. Write solid, hip 210-218 C, if Nink (600 Mrz, DMSO- a_6). $\delta = 3.66$ (s, 2H), 7.40 (s, 1H), 8.65 (s, 1H), 9.86 (s, 1H), 11.18 (s, 1H). ¹³C NMR (151 MHz, DMSO- a_6): $\delta = 27.7$, 108.3, 121.9, 144.5, 147.6, 150.8, 164.7, 192.8. ESI-HRMS: m/z calcd for C₈H₇N₂O₂S: 195.0228; found 195.0219 [M+H]^{*}.

Compound **7**: White solid; mp 261–263 °C; ¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 4.82$ (s, 2H), 7.39 (s, 1H), 8.36 (s, 1H), 9.82 (s, 1H), 11.31 (s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆): $\delta = 66.9$, 108.2, 134.4, 137.8, 143.4, 147.5, 164.2, 192.3. ESI-HRMS: *m/z* calcd for C₈H₇N₂O₃: 179.0457; found 179.0458 [M+H]⁺. Compound **8**: White solid; mp 204–207 °C; ¹H NMR (600 MHz, DMSO-*d*₆):

- Compound **8**: White solid; mp 204–207 °C; ¹H NMR (600 MHz, DMSO-d₆): δ = 3.72 (s, 2H), 7.58 (s, 1H), 8.60 (s, 1H), 10.01 (s, 1H), 10.90 (br s, 1H). ¹³C NMR (151 MHz, DMSO-d₆): δ = 28.6, 120.5, 129.4, 134.0, 145.7, 149.8, 164.0, 191.3. ESI-HRMS: *m*/z calcd for C₆H₇N₂O₂S: 195.0228; found 195.0227 [M+H]⁺.
- Davies, D. T.; Jones, G. E.; Markwell, R. E.; Miller, W.; Pearson, N. D. WO2002056882. Chem. Abstr. 2002, 137, 125092.
- (a) Kelly, T. R.; Lang, F. J. Org. Chem. **1996**, 61, 4623–4633; (b) Ontoria, J. M.; Martin Hernando, J. I.; Malancona, S.; Attenni, B.; Stansfield, I.; Conte, I.; Ercolani, C.; Habermann, J.; Ponzi, S.; Di Filippo, M.; Koch, U.; Rowley, M.; Narjes, F. Bioorg. Med. Chem. Lett. **2006**, 16, 4026–4030.
- Brooks, G.; Davies, D. T.; Jones, G. E.; Markwell, R. E.; Pearson, N. D. WO2003087098; Chem. Abstr. 2003, 139, 337959.
- Blanz, E. J.; French, F. A.; DoAmaral, J. R.; French, D. A. J. Med. Chem. 1970, 13, 1124–1130.
- 8. Berrie, A. H.; Newbold, G. T.; Spring, F. S. J. Chem. Soc. 1951, 2590-2594.